Со времени изобретения хронометра становится актуальной проблема повышения стабильности и точности его хода. Решить эту проблему, ориентируясь только на знания, приобретенные опытом, без обращения к теории, оказалось невозможным.
Одной из сложных и важных проблем в ряду других была проблема изохронизации колебаний спирали; часовых дел мастерам с ней приходилось иметь дело каждый раз, когда перед ними вставал вопрос о подборе изохронной спирали. Хотя еще П. Леруа сформулировал правильно принцип изохронизации, по которому «в каждой волосной спирали достаточной длины существует определенная длина, при которой все колебания, большие и малые, являются изохронными», но он оставался на уровне эмпирического правила — критерия, пока не получил подтверждения со стороны теории. Только после этого стал возможен подход к реализации принципа Леруа не путем «проб и ошибок», а объективно научным.
Для теоретического обоснования принципа Леруа наибольшее значение имели труды Э. Каспари. Он пришел к тем же выводам, что и Берту,
100 лет до того писавший, что для изохронности плоской спирали требуется, чтобы она была возможно большей длины и имела большое число витков малого диаметра. Каспари впервые дал выражение для погрешности периода, вносимой плоской спиралью без концевых кривых, и указал на возможность изохронизации колебательной системы при целом числе витков (+-1/4 витка). Впоследствии Каспари учел поправку на влияние хода механизма и установил значение суммарных углов изохронных спиралей. Он нашел, что на каждом витке спирали имеется не одна (как указывал П. Леруа), а две точки, могущие обеспечить изохронность колебаний. Большое внимание он уделил разработке вопроса о влиянии расположения точек крепления спирали на изохронизм собственных колебаний баланса, установил зависимость периода колебаний от амплитуды с учетом смещения точек крепления концов спирали и числа витков. Эти вопросы стали предметом внимания таких ученых, как М. Резаль и Гроссманы. Первый дал некоторые уточнения выводов Каспари, а вторые исследовали траектории центра тяжести спирали и дали рекомендации по выбору угла между точками крепления.
Следствием применения анкерного хода было увеличение по сравнению с цилиндровым ходом амплитуды колебания системы баланс — спираль и, следовательно, длины спирали, находящейся в паре с балансом. В связи с этим появилась необходимость предотвращения излишнего напряжения спирали и сохранения заданного ему положения иметь спирали с более чем с 8—9 витками. Длина спирали не должна быть и излишней, потому что избы точный вес вредит точности хода.
Первым часовщиком-хронометристом, отошедшим от традиции применения в хронометрах плоской спирали, был Джон Арнольд. Он, как известно, в своих карманных и настольных хронометрах применил спиральную пружину цилиндрической формы с наружной концевой кривой, называемую геликоидальной. Этому примеру вскоре последовали многие мастера-хронометристы. Однако геликоидальная форма спирали оказалась неудобной для применения в карманных хронометрах и в карманных часах, поскольку для расположения такой достаточно длинной спиральной пружины требовалось изготовлять часы больших габаритов. Поэтому во всех карманных часах в паре с балансом по необходимости продолжали применять плоские спирали.
Последние при колебании баланса раскручиваются и закручиваются, и центр тяжести спирали постоянно перемещается около оси вращения баланса. По этой причине в опорах увеличивается трение и возникает добавочный момент на колодке спирали. Чтобы уменьшить влияние добавочного момента и совместить центр тяжести спирали с осью вращения, внешние и внутренние концы спирали в настоящее время выполняются по определенным концевым кривым. Концевые кривые уменьшают влияние смещения центра тяжести баланса со спиралью относительно оси вращения во времени хода часов.
Концевые кривые. Найденная Арнольдом геликоидальная форма спираль ной пружины изготовлялась им с изгибом концов спирали во внутрь. Позже он нашел, что для обеспечения изохронного колебания спирали достаточно изготовлять концевые кривые над или под витками спирали при условии обеспечения достаточной длины волоска.
Нельзя не отметить одного курьезного совпадения: балансовые пружины геликоидальной формы еще до Арнольда были применены Гаррисоном в его морских часах № 1 (1735 г.) и № 2 (1739 г.). В них имелись концевые кривые и такое же свертывание спирали, на которые Арнольд позже получил патент. Правда, гаррисоновские геликоидальные пружины работали на растяжение, а не на кручение. Концевые кривые предназначались для сосредоточения силы растяжения на конце пружины.
Арнольд и его соперники по часовому искусству продолжали совершенствовать метод изготовления концевых кривых спиралей, но достигнутые на этом пути успехи держались в большом секрете и ничего не сообщалось о том, как и почему были достигнуты те или иные результаты.
А. Д. Бреге (1747—1823) в 1802 г. впервые применил в часах плоскую балансовую пружину с наружными концевыми кривыми. В его честь плоские спирали с такими кривыми получили название брегетированных («Spiral Bre- quet»). В этой спирали внешний виток приподнят на 0,3—0,5 мм и расположен над плоскостью спирали; конец концевой кривой, работающей в штифтах градусника, является дугой окружности, проведенной радиусом из центра оси баланса.